

# RECALL...

- Mean = np
- $\sigma^2 = np(1-p)$

(i.e.)  $\sigma = \sqrt{np(1-p)}$ 



### Example:3

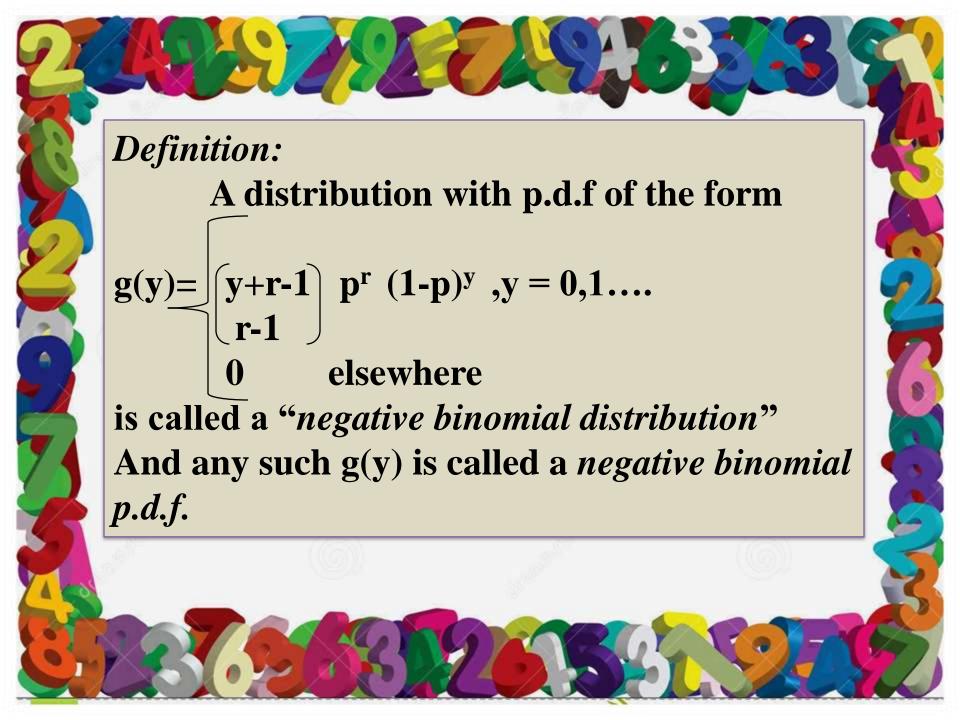
Let the random variable Y equal to the no. of success throughout n independent repetitions of a random experiment with probability P of success (i.e.) Y is b(n,p). The ratio Y/n is called the relative frequency of success for every  $\varepsilon > 0$ .

## Example:4

Let the independent random variable X1 X2 X3 have the same distribution function F(x). Let Y be the middle value of x1 x2 x3 to determine the distribution function of Y.

### Example:6

Consider a sequence of independent random repetition of a random experiment with constant probability P of success. Let the random variable Y denote the number of failures in the sequence before the r-th success. (i.e.) Y+r equal to the number of trials to produce exactly r-success. Here r is a fixed positive integer. To determine the p.d.f of Y.





The p.d.f of the trinomial distribution is

 $\mathbf{f}(\mathbf{x},\mathbf{y}) = \begin{bmatrix} \mathbf{n}! & \mathbf{p} \mathbf{1}^{\mathbf{x}} \mathbf{p} \mathbf{2}^{\mathbf{y}} \mathbf{p} \mathbf{3}^{\mathbf{n}-\mathbf{x}-\mathbf{y}} \end{bmatrix}$ 

x!y!(n-x-y)

0 elsewhere

where x-and y are non-negative integer with x+y<=n and p1p2p3 are positive proper fraction with p1+p2+p3=1.



The m.g.f of a trinomial distribution is

 $M(t1,t2) = (P1e^{t1}+P2e^{t2}+P3)^n \forall real$  values of t1 and t2.

### Note:3

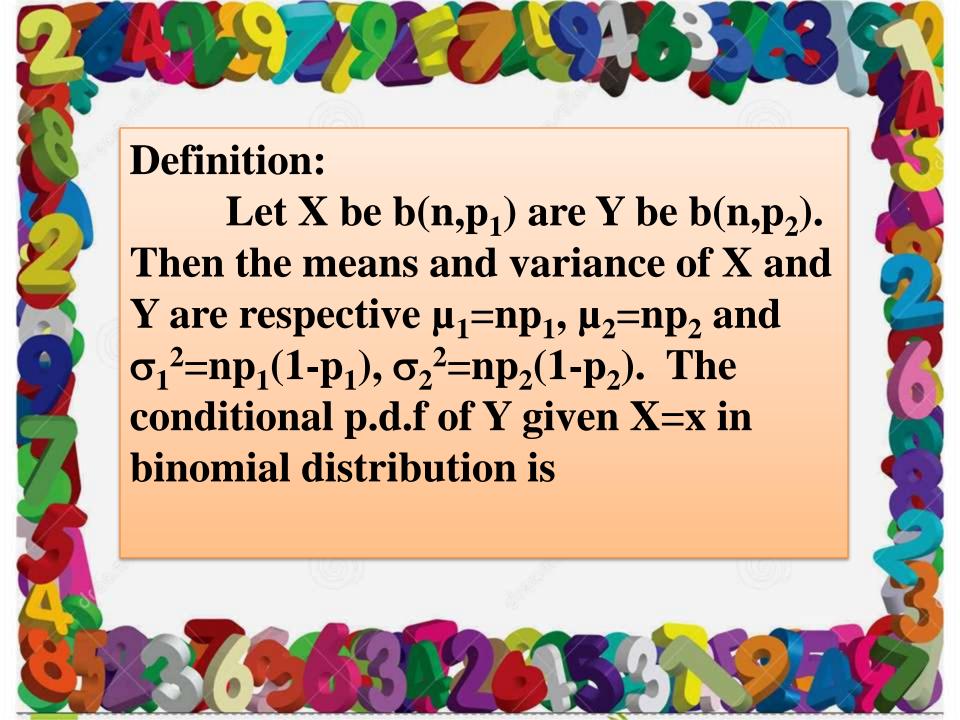
In general, the p.d.f of multinomial distribution is,

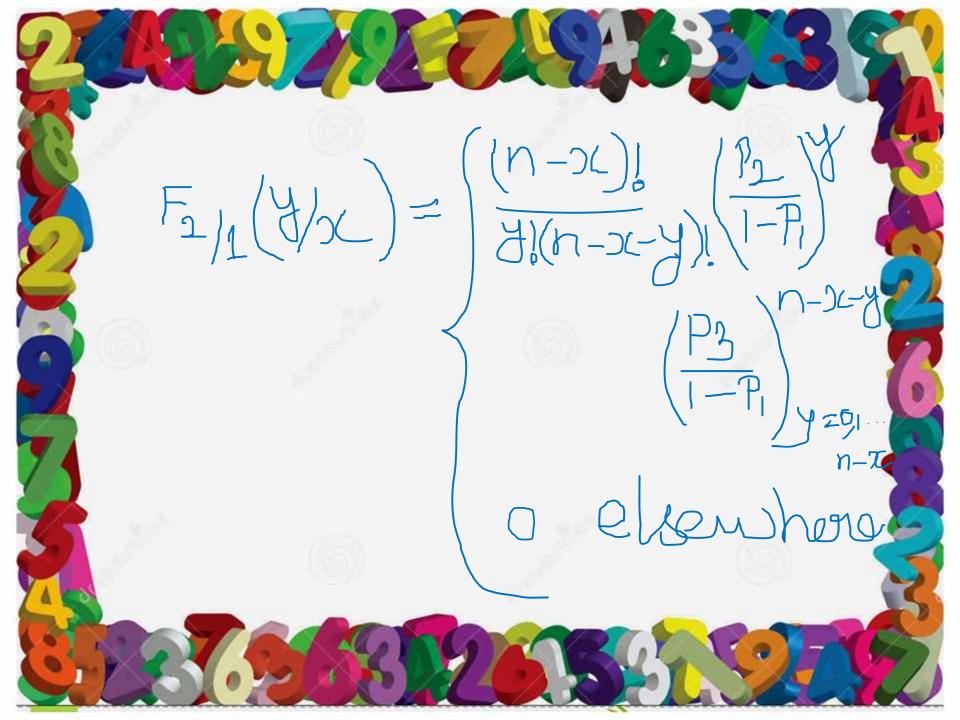
$$F(x_1,x_2....x_n) = \underline{n!} p_1^{x_1}p_2^{x_2}....p_{k-1}x^{k-1}p_kx^k$$

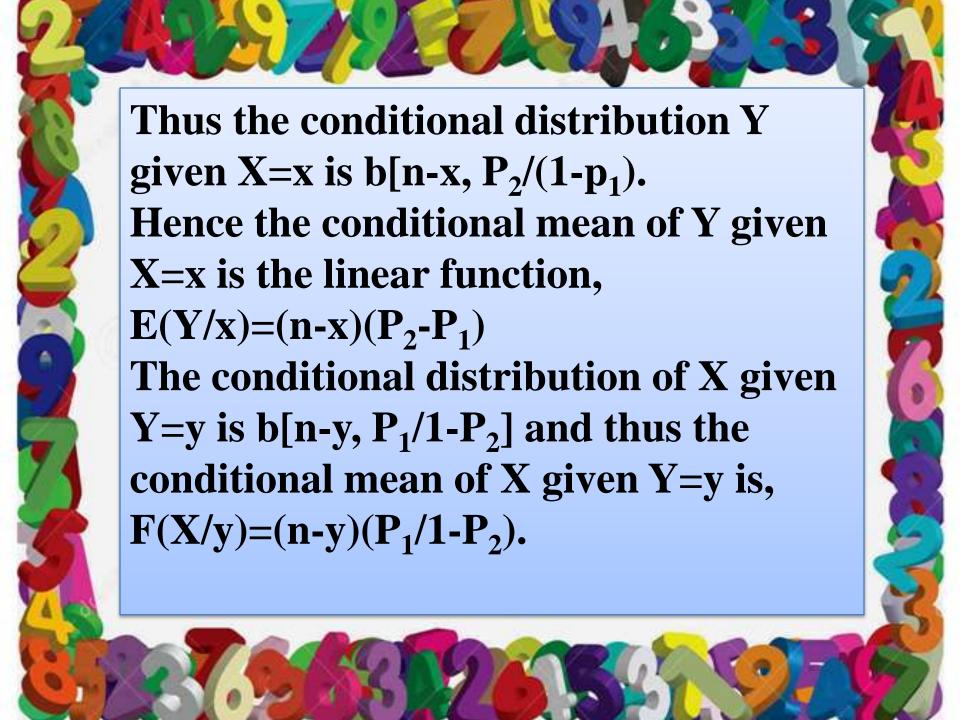
$$x_1!x_2!...x_{k-1}!x_k!$$

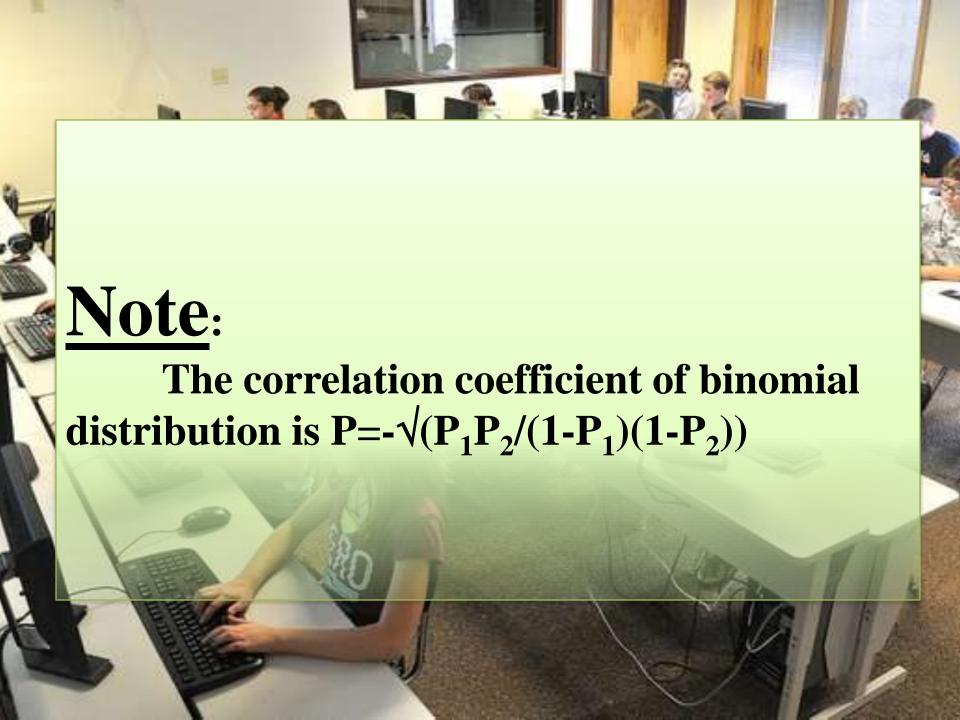
The m.g.f of a multinomial distribution is  $M(t_1,t_2....t_{k-1})=(p_1e^t+p_2e^t+....+p_{k-1}e^{t-1}+p_k)^n$ 

Where  $X_1 X_2 ... X_{k-1}$  are random variables.









#