

- Pulling ingots
- Wafers
- Patterning
- Fabrication cycle
- Testing
- Packaging
- CAD design of ICs
- Future issues

- Monocrystalline silicon is produced from purified polycrystalline silicon by "pulling" an ingot
 - polysilicon is melted using radio frequency induction heaters
 - "seed crystal" of monocrystalline silicon is dipped into melt
 - silicon grows around structure of seed as seed is slowly withdrawn

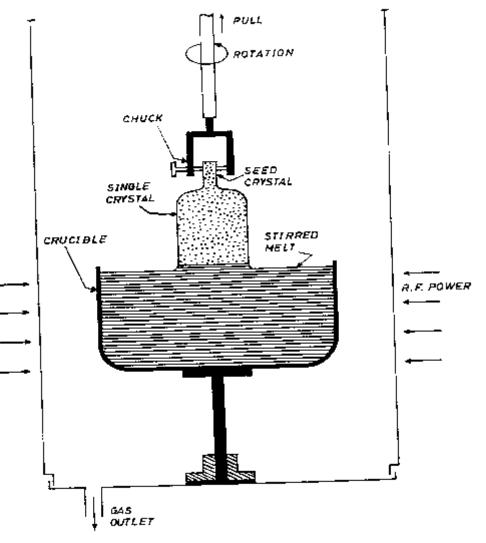


Fig. 2.2b The Czochraiski crystal pull technique

Pulling Ingots (continued)

- Produces an ingot of pure silicon
 - -400 mm 1000 mm long (15" 39")
 - -150 mm 200 mm in diameter (6" 8")
- Growth is a slow process
 - -10 20 hours
- Silicon is often doped as it's grown

Ingot is finely shaped using abrasive belts

-flat spot added for alignment during processing

Sawed into wafers about 600 microns thick

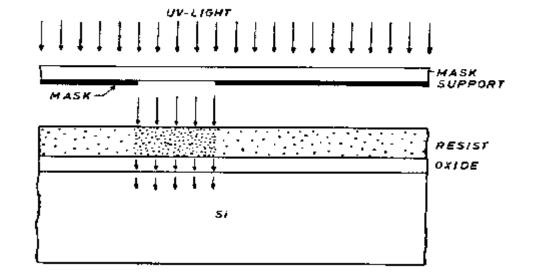
- only a few microns are actually used for IC devices
- -then etched, polished, and cleaned
- -stacked in carriers

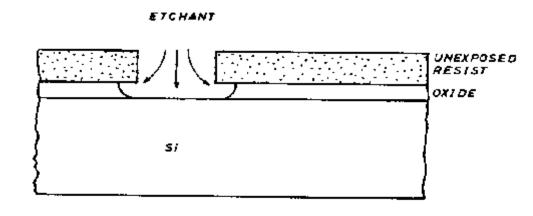
Silicon Dioxide and Polysilicon

- Silicon dioxide is created by interaction between silicon and oxygen or water vapor
 - $-Si + O_2 = SiO_2$ or $Si + 2H_2O = SiO_2 + 2H_2$
 - -protects surface from contaminants
 - -forms insulating layer between conductors
 - -form barrier to dopants during diffusion or ion implantation
 - -grows above and into silicon surface
- Polysilicon

40%

(5.5)


- -silicon without a single crystal structure
- created when silicon is epitaxially grown on SiO2
- also a conductor, but with much more resistance than metal or diffused layers
- commonly used (heavily doped) for gate connections in most MOS processes



- Patterning creates a regular pattern on the surface of the chip, which is used to create features of the IC
 - -involves alternative lithography and etching steps
 - each of several layers involves a separate pattern
- Lithography
 - -patterns are contained on masks
 - » eg, chrome on glass
 - -surface of the wafer is covered with photoresist
 - » organic material sensistive to uv light or X-rays
 - » spin and bake
 - » positive resist becomes more soluable when exposed
 - resist will be removed where mask is clear
 - » negative resist becomes less soluable when exposed
 - resist will be removed where mask is opaque

- Lithography (confinued)
 - mask placed very close to wafer, flooded with uv light
 - solvents remove exposed (unexposed) resist
- Etching removes material from wafer surface where resist has been removed
 - isotropic etching works at same rate in all directions of material

• Etching (continued)

- anisotropic etching works faster in one direction than the other
- wet etching uses liquid solvents to remove materials

 \gg eg, HF for SiO₂

- -dry etching uses gas to remove materials
 - » less undercutting
 - >> can monitor reactants during process, determine automatically when etching is finished
- Finally, remaining photoresist is removed
 - organic solvents or chromic acid
 - pure oxygen, to oxidize organic resist materials

- Metalization is used to create contacts with the silicon and to make interconnections on the chip
- Desired properties are
 - -low resistivity
 - » in ohms/square
 - -good adhesion to silicon and insulators
 - -good coverage of steps in chip surface
 - -immunity to corrosion
 - ductility (so temperature cycles don't cause failures)

Metalization (continued)

Aluminum is common choice but

- Al causes spikes into Si, giving leaky junctions
- high currents carry Al atoms with them, creating shorts
- low melting point prohibits high heat processing later
- Latest step is to use copper
 - -IBM has been shipping chips with copper for a year

» smaller, 50% less power consumption

- other fabs to follow soon

NMOS Fabrication Cycle

- Start with p-type silicon wafer
- Grow a "passivation" layer of SiO₂ (silicon dioxide) over the entire wafer
- Use lithography and a mask to define the source and drain areas, and etch to expose the wafer surface

-first masking step

 Diffuse phosphorous to create source and drain n-type regions

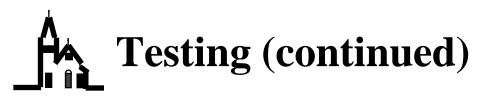
NMOS Fabrication Cycle (continued)

- Use lithography and a mask to define the gate area, and etch to expose the wafer surface
 - -second masking step
- Grow a thin layer of SiO2 as the gate insulator
- Use lithography and a mask to define the source and drain contact areas, and etch to expose the wafer surface

-third masking step

NMOS Fabrication Cycle (continued)

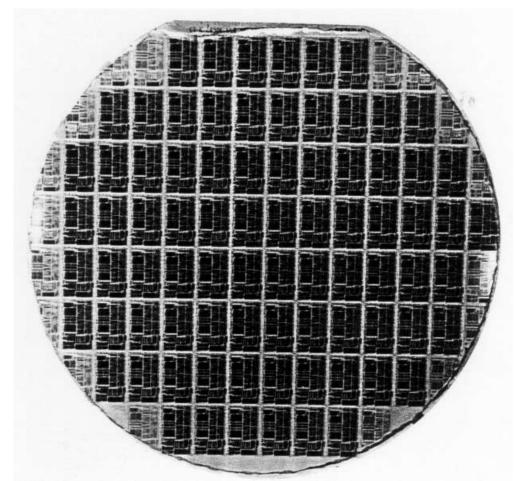
- Evaporate metal (typically copper) over entire surface of wafer
- Use lithography and a mask to define the interconnect areas, and etch away all other metal
 - -fourth masking step


An excellent animation of this process is available at

http://jas.eng.buffalo.edu/applets/ education/fab/NMOS/nmos.html

Two different kinds of testing

- -process testing
- -function testing
- Process testing uses special patterns in separate areas on the wafer to measure important parameters
 - -resistivity of various conductive materials
 - » diffused or ion implanted areas
 - » polysilicon
 - » metal
 - contact resistance
 - -line width and mask alignment
 - -simple components
 - >> transistors
 - >> capacitors
 - » simple logic gates

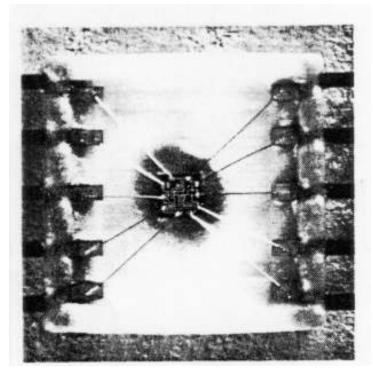


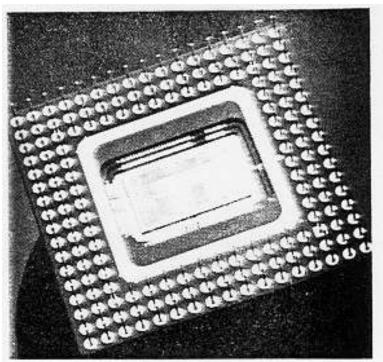
- Functional testing
 - simple or regular circuits can be tested completely
 - » memories
 - -complex circuits cannot be fully tested
 - » test individual functions or paths
 - registers
 - arithmetic and logic units
 - simple instructions
 - data paths

 modifying designs for easier testing, and automated visual inspection for particular flaws, are active research areas

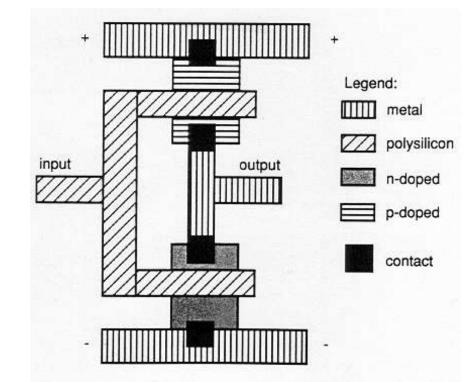


- Silicon processing steps are performed on whole wafers
 - 150mm to 200mm in diameter





- Each wafer contains many individual chips
 - 5mm to 15 mm square
- Chips are scribed with a diamond saw or diamond-tipped scribe, or a laser, and fractured along the scribe lines into chips



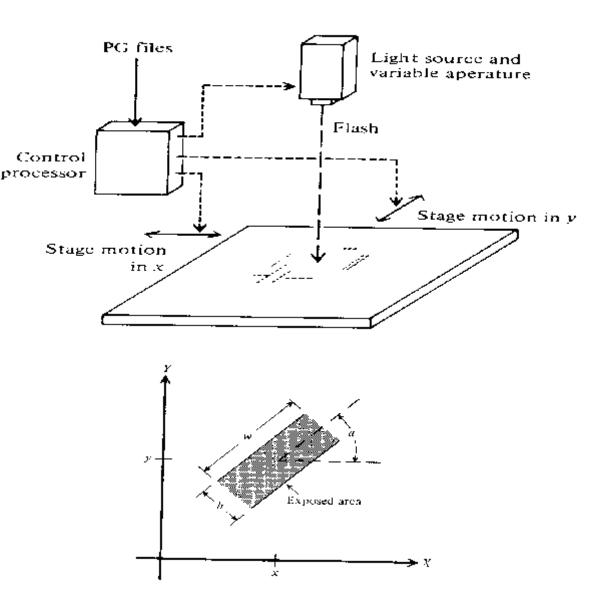
- Each chip is cemented into a package
- Wire leads from pins on the package to bonding pads on the chip are installed
- A cover is cemented over the cavity and marked

Computer-Aided Design of ICs

- IC design started as hand process
 - -leads to many errors
 - requires many trial fabrications and tests to refine design before production
 - » small batches, very expensive
- Around 1980, computeraided design systems began to be used for ICs
 - simple notations for expressing components of chip
 - component libraries for reuse of earlier designs
 - » and mirroring, rotation, etc.

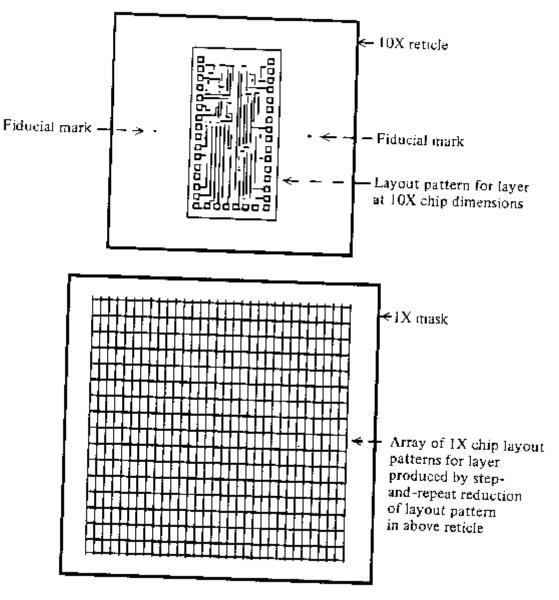
(5.19)

Computer-Aided Design of ICs (continued)^(5.20)


- CAD systems (continued)
 - -enforce design rules
 - -help with routing of connections
 - -simulation of interim designs
 - » 2-D or 3-D device simulators
 - » logic simulators
 - » timing simulators
- Design and layout happens at display
- Simulation happens in batch mode

-extremely computation intensive

Once design is ready for fabrication, CAD system produces pattern generation files


Computer-Aided Design of ICs (continued)

- PG files go to mask house to create masks
 - photographi
 c exposure
 of geometric
 patterns to
 produce
 mask pattern
 (reticle) for
 one IC
 - » typically 10x or more final size

Computer-Aided Design of ICs (continued)

- photo enlarge to produce
 "blowbacks" for visual inspection
- create mask master by "step and repeat" photo reduction of reticle
 - » precise alignment essential
- make submaster and working masks
- Send masks to fab line and fabricate wafers

- Want design of IC to be independent of process used to implement design
 - -especially want to scale as process technologies improve
- Place constraints on widths, separations, overlaps
 - -base all measures on elementary distance unit λ
 - -each process defines a value for λ in microns
 - pattern generator produces output files appropriately
- Examples
 - -diffused regions >= 2 λ
 - -minimum line width 2 λ
 - -separation of lines $\geq \lambda$
 - -gate overlap >= λ
- Current processes have $\lambda = 0.18 0.25$ microns

Current state-of-the-art

- -0.18 micron feature size
- die size about 2.5 cm²
- about 5.5 million transistors on logic devices
- -64 Mbit DRAMS
 - » 64 million transistors

Lithography

- -wavelength of visible light is about 0.5 microns
 - » less than this difficult to pattern with visible light
 - » but 0.18 micron process is optical
 - » uses phase coherence with laser light
- -electon beam exposure
 - » expose resist directly on Si (no mask)
- -electron beam reticles, x-ray exposure of wafer
 - » good for 0.0? micron features
 - » physical limit of Si

- Die size
 - -yield goes down as die size goes up
 - -wafer scale integration
 - hampered by warping of wafer since Si and SiO2 expand and contract at different rates
- Vertical stacking
- Testing
 - -improved design for testability
 - -automated visual inspection
- Expense management
 - partnerships