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(5.2)
Pulling Ingots

 Monocrystalline 
silicon is produced 
from purified 
polycrystalline 
silicon by “pulling” 
an ingot
– polysilicon is 

melted using 
radio frequency 
induction heaters

– “seed crystal” of 
monocrystalline 
silicon is dipped 
into melt

– silicon grows 
around structure 
of seed as seed is 
slowly withdrawn



(5.3)
Pulling Ingots (continued)

 Produces an ingot of pure silicon

– 400 mm - 1000 mm long (15” - 39”)

– 150 mm - 200 mm in diameter (6” - 8”)

 Growth is a slow process

– 10 - 20 hours

 Silicon is often doped as it’s grown



(5.4)
Wafers

 Ingot is finely shaped using abrasive belts
– flat spot added for alignment during 

processing

 Sawed into wafers about 600 microns thick
– only a few microns are actually used for IC 

devices

– then etched, polished, and cleaned

– stacked in carriers



(5.5)
Silicon Dioxide and Polysilicon

 Silicon dioxide is created by interaction 
between silicon and oxygen or water vapor
– Si + O2 =  SiO2 or  Si + 2H2O  =  SiO2 + 2H2

– protects surface from contaminants
– forms insulating layer between conductors
– form barrier to dopants during diffusion or ion 

implantation
– grows above and into silicon surface

 Polysilicon
– silicon without a single crystal structure
– created when silicon is epitaxially grown on 

SiO2

– also a conductor, but with much more 
resistance than metal or diffused layers

– commonly used (heavily doped) for gate 
connections in most MOS processes

40%

60%



(5.6)
Patterning

 Patterning creates a regular pattern on the 
surface of the chip, which is used to create 
features of the IC
– involves alternative lithography and etching

steps
– each of several layers involves a separate 

pattern
 Lithography

– patterns are contained on masks
» eg, chrome on glass

– surface of the wafer is covered with photoresist
» organic material sensistive to uv light or X-rays 
» spin and bake
» positive resist becomes more soluable when 

exposed
•resist will be removed where mask is clear

» negative resist becomes less soluable when 
exposed
•resist will be removed where mask is opaque



(5.7)
Patterning (continued)

 Lithography 
(continued)

– mask placed very 
close to wafer, 
flooded with uv 
light

– solvents remove 
exposed 
(unexposed) resist

 Etching removes 
material from wafer 
surface where resist 
has been removed

– isotropic etching 
works at same 
rate in all 
directions of 
material



(5.8)
Patterning (continued)

 Etching (continued)
– anisotropic etching works faster in one 

direction than the other

– wet etching uses liquid solvents to remove 
materials
» eg, HF for SiO2

– dry etching uses gas to remove materials
» less undercutting

» can monitor reactants during process, 
determine automatically when etching is 
finished

 Finally, remaining photoresist is removed
– organic solvents or chromic acid

– pure oxygen, to oxidize organic resist 
materials



(5.9)
Metalization

 Metalization is used to create contacts with 
the silicon and to make interconnections on 
the chip

 Desired properties are

– low resistivity

» in ohms/square

– good adhesion to silicon and insulators

– good coverage of steps in chip surface

– immunity to corrosion

– ductility (so temperature cycles don’t cause 
failures)



(5.10)
Metalization (continued)

 Aluminum is common choice but
– Al causes spikes into Si, giving leaky junctions

– high currents carry Al atoms with them, 
creating shorts

– low melting point prohibits high heat 
processing later

 Latest step is to use copper

– IBM has been shipping chips with copper for a 
year

» smaller, 50% less power consumption

– other fabs to follow soon



(5.11)
NMOS Fabrication Cycle

 Start with p-type silicon wafer

 Grow a “passivation” layer of SiO2 (silicon 
dioxide) over the entire wafer

 Use lithography and a mask to define the 
source and drain areas, and etch to expose 
the wafer surface

– first masking step

 Diffuse phosphorous to create source and 
drain n-type regions



(5.12)
NMOS Fabrication Cycle (continued)

 Use lithography and a mask to define the 
gate area, and etch to expose the wafer 
surface

– second masking step

 Grow a thin layer of SiO2 as the gate insulator

 Use lithography and a mask to define the 
source and drain contact areas, and etch to 
expose the wafer surface

– third masking step



(5.13)
NMOS Fabrication Cycle (continued)

 Evaporate metal (typically copper) over 
entire surface of wafer

 Use lithography and a mask to define the 
interconnect areas, and etch away all other 
metal

– fourth masking step

An excellent animation of this process is 

available at

http://jas.eng.buffalo.edu/applets/

education/fab/NMOS/nmos.html



(5.14)
Testing

 Two different kinds of testing
– process testing
– function testing

 Process testing uses special patterns in 
separate areas on the wafer to measure 
important parameters
– resistivity of various conductive materials
» diffused or ion implanted areas
» polysilicon
» metal

– contact resistance
– line width and mask alignment
– simple components
» transistors
» capacitors
» simple logic gates 



(5.15)
Testing (continued)

 Functional testing

– simple or regular circuits can be tested 
completely

» memories

– complex circuits cannot be fully tested

» test individual functions or paths

•registers

•arithmetic and logic units

•simple instructions

•data paths

– modifying designs for easier testing, and 
automated visual inspection for particular 
flaws, are active research areas



(5.16)
Packaging

 Silicon processing steps are performed on whole 
wafers

– 150mm to 200mm in diameter



(5.17)
Packaging (continued)

 Each wafer contains 
many individual chips

– 5mm to 15 mm 
square

 Chips are scribed with a 
diamond saw or 
diamond-tipped scribe, 
or a laser, and fractured 
along the scribe lines 
into chips



(5.18)
Packaging (continued)

 Each chip is cemented into a package

 Wire leads from pins on the package to bonding 
pads on the chip are installed

 A cover is cemented over the cavity and marked



(5.19)
Computer-Aided Design of ICs

 IC design started as hand 
process

– leads to many errors

– requires many trial 
fabrications and tests to 
refine design before 
production
» small batches, very 

expensive

 Around 1980, computer-
aided design systems 
began to be used for ICs

– simple notations for 
expressing components 
of chip

– component libraries for 
reuse of earlier designs
» and mirroring, rotation, 

etc.



(5.20)
Computer-Aided Design of ICs (continued)

 CAD systems (continued)

– enforce design rules

– help with routing of connections

– simulation of interim designs

» 2-D or 3-D device simulators

» logic simulators

» timing simulators

 Design and layout happens at display

 Simulation happens in batch mode

– extremely computation intensive

 Once design is ready for fabrication, CAD 
system produces pattern generation files



(5.21)
Computer-Aided Design of ICs (continued)

 PG files go to 
mask house to 
create masks

– photographi
c exposure 
of geometric 
patterns to 
produce 
mask pattern 
(reticle) for 
one IC

» typically 
10x or more 
final size



(5.22)
Computer-Aided Design of ICs (continued)

– photo enlarge to 
produce 
“blowbacks” for 
visual inspection

– create mask master 
by “step and 
repeat” photo 
reduction of reticle

» precise alignment 
essential

– make submaster 
and working masks

 Send masks to fab line 
and fabricate wafers



(5.23)
IC Design Rules

 Want design of IC to be independent of 
process used to implement design
– especially want to scale as process 

technologies improve
 Place constraints on widths, separations, 

overlaps
– base all measures on elementary distance unit 
l

– each process defines a value for l in microns
– pattern generator produces output files 

appropriately
 Examples

– diffused regions >= 2 l
– minimum line width 2 l
– separation of lines >= l
– gate overlap >= l

 Current processes have l = 0.18 - 0.25 
microns



(5.24)
Future Issues

 Current state-of-the-art
– 0.18 micron feature size
– die size about 2.5 cm2

– about 5.5 million transistors on logic devices
– 64 Mbit DRAMS
» 64 million transistors

 Lithography
– wavelength of visible light is about 0.5 microns

» less than this difficult to pattern with visible light
» but 0.18 micron process is optical
» uses phase coherence with laser light

– electon beam exposure
» expose resist directly on Si (no mask)

– electron beam reticles, x-ray exposure of wafer
» good for 0.0? micron features
» physical limit of Si



(5.25)
Future Issues (continued)

 Die size

– yield goes down as die size goes up

– wafer scale integration

– hampered by warping of wafer since Si and 
SiO2 expand and contract at different rates

 Vertical stacking

 Testing

– improved design for testability

– automated visual inspection

 Expense management

– partnerships


