
Chapter 3

Process Description and Control

Operating Systems:

Internals and Design Principles, 6/E

William Stallings

Dave Bremer

Otago Polytechnic, N.Z.

©2008, Prentice Hall



Roadmap

– How are processes represented and 

controlled by the OS. 

– Process states which characterize the 

behaviour of processes. 

– Data structures used to manage processes. 

– Ways in which the OS uses these data 

structures to control process execution. 

– Discuss process management in UNIX SVR4.



Requirements of an

Operating System
• Fundamental Task: Process Management

• The Operating System must

– Interleave the execution of multiple processes

– Allocate resources to processes, and protect 

the resources of each process from other 

processes, 

– Enable processes to share and exchange 

information, 

– Enable synchronization among processes.



Concepts

• From earlier chapters we saw:
– Computer platforms consists of a collection of 

hardware resources

– Computer applications are developed to 
perform some task

– It is inefficient for applications to be written 
directly for a given hardware platform



Concepts cont…

– OS provides an interface for applications to 
use

– OS provides a representation of resources 
that can be requested and accessed by 
application



The OS Manages

Execution of Applications
• Resources are made available to multiple 

applications

• The processor is switched among multiple 

application

• The processor and I/O devices can be 

used efficiently



What is a “process”?

• A program in execution

• An instance of a program running on a 
computer

• The entity that can be assigned to and 
executed on a processor

• A unit of activity characterized by the 
execution of a sequence of instructions, a 
current state, and an associated set of 
system instructions



Process Elements

• A process is comprised of:

– Program code (possibly shared)

– A set of data

– A number of attributes describing the state of 
the process



Process Elements

• While the process is running it has a 
number of elements including

– Identifier

– State

– Priority

– Program counter

– Memory pointers

– Context data

– I/O status information

– Accounting information



Process Control Block

• Contains the process 

elements

• Created and manage by 

the operating system

• Allows support for 

multiple processes



Trace of the Process

• The behavior of an individual process is 

shown by listing the sequence of 

instructions that are executed

• This list is called a Trace

• Dispatcher is a small program which 

switches the processor from one process 

to another



Process Execution

• Consider three 

processes being 

executed

• All are in memory 

(plus the dispatcher)

• Lets ignore virtual 

memory for this.



Trace from the 

processes point of view:
• Each process runs to completion



Trace from Processors 

point of view

Timeout
I/O

TimeoutTimeout



Roadmap

– How are processes represented and 

controlled by the OS. 

– Process states which characterize the 

behaviour of processes. 

– Data structures used to manage processes. 

– Ways in which the OS uses these data 

structures to control process execution. 

– Discuss process management in UNIX SVR4.



Two-State Process Model

• Process may be in one of two states

– Running

– Not-running



Queuing Diagram

Etc … processes moved by the dispatcher of the OS to the CPU then back 

to the queue until the task is competed



Process Birth and Death

Creation Termination 

New batch job Normal Completion

Interactive Login Memory unavailable

Created by OS to 

provide a service

Protection error

Spawned by existing 

process

Operator or OS 

Intervention

See tables 3.1 and 3.2 for more



Process Creation

• The OS builds a data structure to manage 

the process

• Traditionally, the OS created all processes

– But it can be useful to let a running process 

create another

• This action is called process spawning

– Parent Process is the original, creating, 

process

– Child Process is the new process



Process Termination

• There must be some way that a process 

can indicate completion.

• This indication may be:

– A HALT instruction generating an interrupt 

alert to the OS.

– A user action (e.g. log off, quitting an 

application)

– A fault or error

– Parent process terminating



Five-State 

Process Model



Using Two Queues



Multiple Blocked Queues



Suspended Processes

• Processor is faster than I/O so all 
processes could be waiting for I/O

– Swap these processes to disk to free up more 
memory and use processor on more 
processes

• Blocked state becomes suspend state 
when swapped to disk

• Two new states

– Blocked/Suspend

– Ready/Suspend



One Suspend State



Two Suspend States



Reason for Process 

Suspension
Reason Comment

Swapping The OS needs to release sufficient main memory to 

bring in a process that is ready to execute.

Other OS Reason OS suspects process of causing a problem.

Interactive User 

Request

e.g. debugging or in connection with the use of a 

resource.

Timing A process may be executed periodically (e.g., an 

accounting or system monitoring process) and may 

be suspended while waiting for the next time.

Parent Process 

Request

A parent process may wish to suspend execution of 

a descendent to examine or modify the suspended 

process, or to coordinate the activity of various 

descendants.

Table 3.3 Reasons for Process Suspension



Roadmap

– How are processes represented and 

controlled by the OS. 

– Process states which characterize the 

behaviour of processes. 

– Data structures used to manage processes. 

– Ways in which the OS uses these data 

structures to control process execution. 

– Discuss process management in UNIX SVR4.



Processes 

and Resources



Operating System 

Control Structures
• For the OS is to manage processes and 

resources, it must have information about 

the current status of each process and 

resource. 

• Tables are constructed for each entity the 

operating system manages



OS Control Tables



Memory Tables

• Memory tables are used to keep track of 

both main and secondary memory. 

• Must include this information:

– Allocation of main memory to processes

– Allocation of secondary memory to processes

– Protection attributes for access to shared 

memory regions

– Information needed to manage virtual memory



I/O Tables

• Used by the OS to manage the I/O 

devices and channels of the computer.

• The OS needs to know

– Whether the I/O device is available or 

assigned

– The status of I/O operation

– The location in main memory being used as 

the source or destination of the I/O transfer



File Tables

• These tables provide information about:

– Existence of files

– Location on secondary memory

– Current Status

– other attributes.

• Sometimes this information is maintained 

by a file management system



Process Tables

• To manage processes the OS needs to 

know details of the processes 

– Current state

– Process ID

– Location in memory

– etc

• Process control block

– Process image is the collection of program. 

Data, stack, and attributes



Process Attributes

• We can group the process control block 

information into three general categories:

– Process identification

– Processor state information

– Process control information



Process Identification

• Each process is assigned a unique 

numeric identifier.

• Many of the other tables controlled by the 

OS may use process identifiers to cross-

reference process tables



Processor State 

Information
• This consists of the contents of processor 

registers. 

– User-visible registers

– Control and status registers

– Stack pointers

• Program status word (PSW)

– contains status information

– Example: the EFLAGS register on Pentium 

processors



Pentium II 

EFLAGS Register

Also see Table 3.6



Process Control

Information
• This is the additional information needed 

by the OS to control and coordinate the 

various active processes.

– See table 3.5 for scope of information



Structure of Process 

Images in Virtual Memory



Role of the 

Process Control Block
• The most important data structure in an 

OS

– It defines the state of the OS

• Process Control Block requires protection

– A faulty routine could cause damage to the 

block destroying the OS’s ability to manage 

the process

– Any design change to the block could affect 

many modules of the OS



Roadmap

– How are processes represented and 

controlled by the OS. 

– Process states which characterize the 

behaviour of processes. 

– Data structures used to manage processes. 

– Ways in which the OS uses these data 

structures to control process execution. 

– Discuss process management in UNIX SVR4.



Modes of Execution

• Most processors support at least two 

modes of execution

• User mode

– Less-privileged mode

– User programs typically execute in this mode

• System mode

– More-privileged mode

– Kernel of the operating system



Process Creation

• Once the OS decides to create a new 

process it:

– Assigns a unique process identifier

– Allocates space for the process

– Initializes process control block

– Sets up appropriate linkages

– Creates or expand other data structures



Switching Processes

• Several design issues are raised regarding 

process switching

– What events trigger a process switch? 

– We must distinguish between mode switching 

and process switching.

– What must the OS do to the various data 

structures under its control to achieve a 

process switch?



When to switch processes

Mechanism Cause Use

Interrupt External to the execution of 

the current instruction

Reaction to an asynchronous

external event

Trap Associated with the execution 

of the current instruction

Handling of an error or an

exception condition

Supervisor call Explicit request Call to an operating system

function

Table 3.8 Mechanisms for Interrupting the Execution of a Process

A process switch may occur any time that the OS has gained control from the 

currently running process. Possible events giving OS control are: 



Change of 

Process State …
• The steps in a process switch are:

1. Save context of processor including program 
counter and other registers

2. Update the process control block of the 
process that is currently in the Running state

3. Move process control block to appropriate 
queue – ready; blocked; ready/suspend



Change of 

Process State cont…
4. Select another process for execution

5. Update the process control block of the 

process selected

6. Update memory-management data 

structures

7. Restore context of the selected process



Is the OS a Process?

• If the OS is just a collection of programs 

and if it is executed by the processor just 

like any other program, is the OS a 

process?

• If so, how is it controlled?

– Who (what) controls it?



Execution of the

Operating System



Non-process Kernel

• Execute kernel outside of any process

• The concept of process is considered to 
apply only to user programs

– Operating system code is executed as a 
separate entity that operates in privileged mode



Execution Within
User Processes

• Execution Within User 
Processes

– Operating system software within 
context of a user process

– No need for Process Switch to 
run OS routine



Process-based 

Operating System
• Process-based operating system

– Implement the OS as a collection of system 

process



Security Issues

• An OS associates a set of privileges with 

each process.

– Highest level being administrator, supervisor, 

or root, access.

• A key security issue in the design of any 

OS is to prevent anything (user or 

process) from gaining unauthorized 

privileges on the system 

– Especially - from gaining root access.



System access threats

• Intruders

– Masquerader (outsider)

– Misfeasor (insider)

– Clandestine user (outside or insider)

• Malicious software (malware)



Countermeasures: 

Intrusion Detection
• Intrusion detection systems are typically 

designed to detect human intruder and 

malicious software behaviour.

• May be host or network based

• Intrusion detection systems (IDS) typically 

comprise

– Sensors

– Analyzers

– User Interface



Countermeasures: 

Authentication
• Two Stages:

– Identification

– Verification

• Four Factors:

– Something the individual knows

– Something the individual possesses

– Something the individual is (static biometrics)

– Something the individual does (dynamic 

biometrics)



Countermeasures: 

Access Control
• A policy governing access to resources

• A security administrator maintains an 

authorization database

– The access control function consults this to 

determine whether to grant access.

• An auditing function monitors and keeps a 

record of user accesses to system 

resources.



Countermeasures: 

Firewalls
• Traditionally, a firewall is a dedicated 

computer that:

– interfaces with computers outside a network 

– has special security precautions built into it to 

protect sensitive files on computers within the 

network. 



Roadmap

– How are processes represented and 

controlled by the OS. 

– Process states which characterize the 

behaviour of processes. 

– Data structures used to manage processes. 

– Ways in which the OS uses these data 

structures to control process execution. 

– Discuss process management in UNIX SVR4.



Unix SVR4
System V Release 4

• Uses the model of fig3.15b where most of 

the OS executes in the user process

• System Processes - Kernel mode only

• User Processes

– User mode to execute user programs and 

utilities

– Kernel mode to execute instructions that belong 

to the kernel.



UNIX Process State 

Transition Diagram



UNIX Process States



A Unix Process

• A process in UNIX is a set of data 

structures that provide the OS with all of 

the information necessary to manage and 

dispatch processes. 

• See Table 3.10 which organizes the 

elements into three parts:

– user-level context, 

– register context, and 

– system-level context.



Process Creation

• Process creation is by means of the kernel 

system call,fork( ).

• This causes the OS, in Kernel Mode, to:

1. Allocate a slot in the process table for the 

new process.

2. Assign a unique process ID to the child 

process.

3. Copy of process image of the parent, with 

the exception of any shared memory.



Process Creation 

cont…
4. Increment the  counters for any files owned 

by the parent, to reflect that an additional 

process now also owns those files.

5. Assign the child process to the Ready to 

Run state.

6. Returns the ID number of the child to the 

parent process, and a 0 value to the child 

process.



After Creation

• After creating the process the Kernel can 

do one of the following, as part of the 

dispatcher routine:

– Stay in the parent process. 

– Transfer control to the child process

– Transfer control to another process.



Chapter 1

Computer System Overview

Dave Bremer

Otago Polytechnic, N.Z.

©2008, Prentice Hall

Operating Systems:

Internals and Design Principles, 6/E

William Stallings



Roadmap

–Basic Elements

– Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques



Operating System

• Exploits the hardware resources of one or 

more processors

• Provides a set of services to system users

• Manages secondary memory and I/O 

devices



A Computer’s 

Basic Elements
• Processor

• Main Memory

• I/O Modules

• System Bus



Processor

• Controls operation, performs data 

processing

• Two internal registers

– Memory address resister (MAR)

– Memory buffer register (MBR)

• I/O address register

• I/O buffer register



Main Memory

• Volatile

– Data is typically lost when power is removed

• Referred to as real memory or primary 

memory

• Consists of a set of locations defined by 

sequentially numbers addresses

– Containing either data or instructions



I/O Modules

• Moves data between the computer and the 

external environment such as:

– Storage (e.g. hard drive)

– Communications equipment

– Terminals

• Specified by an I/O Address Register 

– (I/OAR)



System Bus

• Communication among processors, main 

memory, and I/O modules



Top-Level View



Roadmap

– Basic Elements

–Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques



Processor Registers

• Faster and smaller than main memory

• User-visible registers

– Enable programmer to minimize main 

memory references by optimizing register use

• Control and status registers

– Used by processor to control operating of the 

processor

– Used by privileged OS routines to control the 

execution of programs



User-Visible Registers

• May be referenced by machine language

– Available to all programs – application 

programs and system programs

• Types of registers typically available are:

– data, 

– address, 

– condition code registers.



Data and 

Address Registers
• Data

– Often general purpose

– But some restrictions may apply

• Address

– Index Register

– Segment pointer

– Stack pointer



Control and 

Status Registers
• Program counter (PC)

– Contains the address of an instruction to be 

fetched

• Instruction register (IR)

– Contains the instruction most recently fetched

• Program status word (PSW)

– Contains status information



Condition codes

• Usually part of the control register

– Also called flags

• Bits set by processor hardware as a result 

of operations

– Read only, intended for feedback regarding 

the results of instruction execution.



Roadmap

– Basic Elements

– Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques



Instruction Execution

• A program consists of a set of instructions 

stored in memory

• Two steps

– Processor reads (fetches) instructions from 

memory

– Processor executes each instruction



Basic Instruction Cycle



Instruction Fetch 

and Execute
• The processor fetches the instruction from 

memory

• Program counter (PC) holds address of 

the instruction to be fetched next

– PC is incremented after each fetch



Instruction Register

• Fetched instruction loaded into instruction 

register

• Categories

– Processor-memory, 

– processor-I/O, 

– Data processing, 

– Control



Characteristics of a 

Hypothetical Machine



Example of

Program Execution



Roadmap

– Basic Elements

– Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques



Interrupts

• Interrupt the normal sequencing of the 

processor

• Provided to improve processor utilization

– Most I/O devices are slower than the 

processor

– Processor must pause to wait for device



Common Classes 

of Interrupts



Flow of Control 

without Interrupts



Interrupts and the

Instruction Cycle



Transfer of Control 

via Interrupts



Instruction Cycle 

with Interrupts



Short I/O Wait



Long I/O wait



Simple 

Interrupt Processing



Changes in Memory and 

Registers for an Interrupt



Multiple Interrupts

• Suppose an interrupt occurs while another 

interrupt is being processed.

– E.g. printing data being received via 

communications line.

• Two approaches:

– Disable interrupts during interrupt processing

– Use a priority scheme.



Sequential 

Interrupt Processing



Nested 

Interrupt Processing



Example of 

Nested Interrupts



Multiprogramming

• Processor has more than one program to 

execute

• The sequence the programs are executed 

depend on their relative priority and 

whether they are waiting for I/O

• After an interrupt handler completes, 

control may not return to the program that 

was executing at the time of the interrupt



Roadmap

– Basic Elements

– Processor Registers

– Instruction Execution

– Interrupts

–The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques



Memory Hierarchy

• Major constraints in memory

– Amount

– Speed

– Expense

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access speed



The Memory Hierarchy

• Going down the 

hierarchy

– Decreasing cost per bit

– Increasing capacity

– Increasing access time

– Decreasing frequency of 

access to the memory 

by the processor



Secondary Memory

• Auxiliary memory

• External

• Nonvolatile

• Used to store program and data files



Roadmap

– Basic Elements

– Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

–Cache Memory

– I/O Communication Techniques



Cache Memory

• Invisible to the OS

– Interacts with other memory management 

hardware

• Processor must access memory at least 

once per instruction cycle

– Processor speed faster than memory access 

speed

• Exploit the principle of locality with a small 

fast memory



Principal of Locality

• More details later but in short …

• Data which is required soon is often close 

to the current data

– If data is referenced, then it’s neighbour might 

be needed soon.



Cache and Main Memory



Cache Principles

• Contains copy of a portion of main 

memory

• Processor first checks cache

– If not found, block of memory read into cache

• Because of locality of reference, likely 

future memory references are in that block



Cache/Main-Memory 

Structure



Cache Read Operation



Cache Design Issues

• Main categories are:

– Cache size

– Block size

– Mapping function

– Replacement algorithm

– Write policy



Size issues

• Cache size

– Small caches have significant impact on 

performance

• Block size

– The unit of data exchanged between cache 

and main memory

– Larger block size means more hits 

– But too large reduces chance of reuse.



Mapping function

• Determines which cache location the block 

will occupy

• Two constraints:

– When one block read in, another may need 

replaced

– Complexity of mapping function increases 

circuitry costs for searching.



Replacement Algorithm

• Chooses which block to replace when a 

new block is to be loaded into the cache.

• Ideally replacing a block that isn’t likely to 

be needed again

– Impossible to guarantee

• Effective strategy is to replace a block that 

has been used less than others

– Least Recently Used (LRU)



Write policy

• Dictates when the memory write operation 

takes place

• Can occur every time the block is updated

• Can occur when the block is replaced

– Minimize write operations

– Leave main memory in an obsolete state



Roadmap

– Basic Elements

– Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques



I/O Techniques

• When the processor encounters an 

instruction relating to I/O, 

– it executes that instruction by issuing a 

command to the appropriate I/O module.

• Three techniques are possible for I/O 

operations:

– Programmed I/O

– Interrupt-driven I/O

– Direct memory access (DMA)



Programmed I/O

• The I/O module performs the requested 

action 

– then sets the appropriate bits in the I/O status 

register 

– but takes no further action to alert the 

processor.

• As there are no interrupts, the processor 

must determine when the instruction is 

complete



Programmed I/O

Instruction Set
• Control

– Used to activate and instruct device

• Status

– Tests status conditions

• Transfer

– Read/write between process register and device



Programmed 

I/O Example
• Data read in a word at a 

time

– Processor remains in status-

checking look while reading



Interrupt-Driven I/O

• Processor issues an I/O command to a 

module 

– and then goes on to do some other useful 

work.

• The I/O module will then interrupt the 

processor to request service when it is 

ready to exchange data with the 

processor.



Interrupt-

Driven I/O
• Eliminates needless 

waiting

– But everything passes 

through processor.



Direct Memory Access

• Performed by a separate module on the 

system

• When needing to read/write processor 

issues a command to DMA module with:

– Whether a read or write is requested 

– The address of the I/O device involved

– The starting location in memory to read/write

– The number of words to be read/written



Direct Memory Access

• I/O operation delegated to 

DMA module

• Processor  only involved 

when beginning and 

ending transfer.

• Much more efficient.



Chapter 2

Operating System Overview

Dave Bremer

Otago Polytechnic, N.Z.

©2008, Prentice Hall

Operating Systems:

Internals and Design Principles, 6/E

William Stallings



Roadmap

–Operating System Objectives/Functions

– The Evolution of Operating Systems

– Major Achievements

– Developments Leading to Modern Operating 

Systems

– Microsoft Windows Overview

– UNIX Systems

– Linux



Operating System

• A program that controls the execution of 

application programs

• An interface between applications and 

hardware

• Main objectives of an OS:

– Convenience

– Efficiency

– Ability to evolve



Layers and Views



Services Provided 

by the Operating System
• Program development

– Editors and debuggers.

• Program execution

– OS handles scheduling of numerous tasks 

required to execute a program

• Access I/O devices

– Each device will have unique interface

– OS presents standard interface to users



Services cont…

• Controlled access to files

– Accessing different media but presenting a 

common interface to users

– Provides protection in multi-access systems

• System access

– Controls access to the system and its 

resources



Services cont…

• Error detection and response

– Internal and external hardware errors

– Software errors 

– Operating system cannot grant request of 

application

• Accounting

– Collect usage statistics 

– Monitor performance



The Role of an OS

• A computer is a set of resources for the 

movement, storage, and processing of 

data.

• The OS is responsible for managing these 

resources.



Operating System 

as Software
• The OS functions in the same way as an 

ordinary computer software

– It is a program that is executed by the CPU

• Operating system relinquishes control of 

the processor



OS as 

Resource Manager



Evolution of Operating 

Systems
• Operating systems will evolve over time

– Hardware upgrades plus new types of 

hardware

– New services

– Fixes



Roadmap

– Operating System Objectives/Functions

–The Evolution of Operating Systems

– Major Achievements

– Developments Leading to Modern Operating 

Systems

– Microsoft Windows Overview

– UNIX Systems

– Linux



Evolution of 

Operating Systems
• It may be easier to understand the key 

requirements of an OS by considering the 

evolution of Operating Systems

• Stages include

– Serial Processing

– Simple Batch Systems

– Multiprogrammed batch systems

– Time Sharing Systems



Serial Processing

• No operating system

• Machines run from a console with display 

lights, toggle switches, input device, and 

printer

• Problems include:

– Scheduling

– Setup time



Simple batch system

• Early computers were extremely 

expensive

– Important to maximize processor utilization

• Monitor

– Software that controls the sequence of events

– Batch jobs together

– Program returns control to monitor when 

finished



Monitor’s perspective

• Monitor controls the 

sequence of events

• Resident Monitor is software 

always in memory

• Monitor reads in job and 

gives control

• Job returns control to monitor



Job Control Language

• Special type of programming language to 

control jobs 

• Provides instruction to the monitor

– What compiler to use

– What data to use



Desirable Hardware 

Features
• Memory protection for monitor

– Jobs cannot overwrite or alter

• Timer

– Prevent a job from monopolizing system

• Privileged instructions

– Only executed by the monitor

• Interrupts



Modes of Operation

• User Mode

– User program executes in user mode 

– Certain areas of memory protected from user 

access

– Certain instructions may not be executed

• Kernel Mode

– Monitor executes in kernel mode

– Privileged instructions may be executed, all 

memory accessible.



Multiprogrammed 

Batch Systems
• CPU is often idle 

– Even with automatic job sequencing.

– I/O devices are slow compared to processor



Uniprogramming

• Processor must wait for I/O instruction to 

complete before preceding



Multiprogramming

• When one job needs to wait for I/O, the 

processor can switch to the other job



Multiprogramming



Example



Utilization Histograms



Time Sharing Systems

• Using multiprogramming to handle multiple 

interactive jobs

• Processor’s time is shared among multiple 

users

• Multiple users simultaneously access the 

system through terminals



Batch Multiprogramming 

vs. Time Sharing



Early Example: CTSS

• Compatible Time-Sharing System (CTSS) 

– Developed at MIT as project MAC

• Time Slicing:

– When control was passed to a user

– User program and data loaded

– Clock generates interrupts about every 0.2 

sec

– At each interrupt OS gained control and could 

assign processor to another user



CTSS Operation



Problems and Issues

• Multiple jobs in memory must be protected 

from each other’s data

• File system must be protected so that only 

authorised users can access

• Contention for resources must be handled

– Printers, storage etc



Roadmap

– Operating System Objectives/Functions

– The Evolution of Operating Systems

–Major Achievements

– Developments Leading to Modern Operating 

Systems

– Microsoft Windows Overview

– UNIX Systems

– Linux



Major Advances

• Operating Systems are among the most 

complex pieces of software ever 

developed

• Major advances include:

– Processes

– Memory management

– Information protection and security

– Scheduling and resource management

– System 



Process

• Fundamental to the structure of OS’s

• A process is:

– A program in execution

– An instance of a running program

– The entity that can be assigned to and 

executed on a processor

– A single sequential thread of execution, a 

current state, and an associated set of system 

resources.



Causes of Errors when 

Designing System Software
• Error in designing an OS are often subtle 

and difficult to diagnose

• Errors typically include:

– Improper synchronization

– Failed mutual exclusion

– Non-determinate program operation

– Deadlocks



Components of 

a Process
• A process consists of

– An executable program

– Associated data needed by the program

– Execution context of the program (or “process 

state”)

• The execution context contains all 

information the operating system needs to 

manage the process



Process Management



Memory Management

• The OS has 5 principal storage 

management responsibilities

– Process isolation

– Automatic allocation and management

– Support of modular programming

– Protection and access control

– Long-term storage



Virtual Memory

• File system implements long-term store

• Virtual memory allows programs to 

address memory from a logical point of 

view

– Without regard to the limits of physical 

memory



Paging

• Allows process to be comprised of a 

number of fixed-size blocks, called pages

• Virtual address is a page number and an 

offset within the page

• Each page may be located any where in 

main memory



Virtual Memory



Virtual Memory

Addressing



Information Protection 

and Security
• The problem involves controlling access to 

computer systems and the information 

stored in them.

• Main issues are:

– Availability

– Confidentiality

– Data integrity

– Authenticity



Scheduling and

Resource Management
• Key responsibility of an OS is managing 

resources

• Resource allocation policies must 

consider:

– Fairness

– Differential responsiveness

– Efficiency



Key Elements of an

Operating System



System Structure

• View the system as a series of levels

• Each level performs a related subset of 

functions

• Each level relies on the next lower level to 

perform more primitive functions

• This decomposes a problem into a number 

of more manageable subproblems



OS Design Hierarchy



Roadmap

– Operating System Objectives/Functions

– The Evolution of Operating Systems

– Major Achievements

–Developments Leading to Modern 

Operating Systems

– Microsoft Windows Overview

– UNIX Systems

– Linux



Different Architectural 

Approaches
• Various approaches have been tried, 

categories include:

– Microkernel architecture

– Multithreading

– Symmetric multiprocessing

– Distributed operating systems

– Object-oriented design



Microkernel Architecture

• Most early OS are a monolithic kernel

– Most OS functionality resides in the kernel.

• A microkernel assigns only a few essential 

functions to the kernel

– Address spaces

– Interprocess communication (IPC)

– Basic scheduling



Multithreading

• Process is divided into threads that can 

run concurrently

• Thread

– Dispatchable unit of work

– executes sequentially and is interruptible

• Process is a collection of one or more 

threads



Symmetric 

multiprocessing (SMP)
• An SMP system has

– multiple processors

– These processors share same main memory 

and I/O facilities

– All processors can perform the same 

functions

• The OS of an SMP schedules processes 

or threads across all of the processors.



SMP Advantages

• Performance

– Allowing parallel processing

• Availability

– Failure of a single process does not halt the 

system

• Incremental Growth

– Additional processors can be added.

• Scaling



Multiprogramming and 

Multiprocessing



Distributed 

Operating Systems
• Provides the illusion of

– a single main memory space and 

– single secondary memory space

• Early stage of development



Object-oriented design

• Used for adding modular extensions to a 

small kernel

• Enables programmers to customize an 

operating system without disrupting 

system integrity



Roadmap

– Operating System Objectives/Functions

– The Evolution of Operating Systems

– Major Achievements

– Developments Leading to Modern Operating 

Systems

–Microsoft Windows Overview

– UNIX Systems

– Linux



Single-User 

Multitasking
• From Windows 2000 on Windows 

development developed to exploit modern 

32-bit and 64-bit microprocessors

• Designed for single users who run multiple 

programs

• Main drivers are:

– Increased memory and speed of 

microprocessors

– Support for virtual memory



Windows Architecture



Client/Server Model

• Windows OS, protected subsystem, and 

applications all use a client/server model

– Common in distributed systems, but can be 

used internal to a single system

• Processes communicate via RPC



Windows Objects

• Windows draws heavily on the concepts of 

object-oriented design.

• Key Object Oriented concepts used by 

Windows are:

– Encapsulation

– Object class and instance



Roadmap

– Operating System Objectives/Functions

– The Evolution of Operating Systems

– Major Achievements

– Developments Leading to Modern Operating 

Systems

– Microsoft Windows Overview

–UNIX Systems

– Linux



Description of UNIX



Traditional UNIX Kernel



System V Release 4 

(SVR4)



Roadmap

– Operating System Objectives/Functions

– The Evolution of Operating Systems

– Major Achievements

– Developments Leading to Modern Operating 

Systems

– Microsoft Windows Overview

– UNIX Systems

–Linux



Modular 

Monolithic Kernel
• Although monolithic, the kernel is 

structures as a collection of modules

– Loadable modules

– An object file which can be linked and 

unlinked at run time

• Characteristics:

– Dynamic Linking

– Stackable modules



Linux Kernel Modules



Linux Kernel 

Components


